Lessons Learned From First Generation IoT Installations

The significant drawbacks of Wi-Fi

At first glance, Wi-Fi-based sensors seems like a good choice for a non consumer facing sensor network, however, we have discovered that Wi-Fi has some significant drawbacks.

Access

One of the biggest drawbacks to Wi-Fi enabled sensors in a corporate environment at many of the companies is gaining access. Corporate IT often has valid security concerns of hundreds if not thousands of sensors joining the network and have deployed corporate firewalls that block any access. Often this means that we are not allowed to spin up our own Wi-Fi network in order to have a gateway for a customer’s IoT sensor network. If IT has already deployed a Wi-Fi network they are rarely willing to provide the passwords to allow the IoT network devices and gateways to take advantage of it. Relying on corporate Wi-Fi can make on-site installations and maintenance extremely complex and painful. The whole project becomes dependent on the goodwill of a network administrator for access every time maintenance needs to be performed.

Power

Wi-Fi has good transmission range but that comes with a cost of high power usage. With a short battery life, maintenance costs for Wi-Fi sensors are higher than low-power alternatives. One wireless protocol that is we see in many successful deployments is LoRa because it offers long transmission range at a much lower battery usage than Wi-Fi.

Moving to LoRa and other long range protocols

If you follow our blog and publications, you will notice we have been talking a lot about network technologies, this isn’t a coincidence. We have spent a long time evaluating and piloting these stacks with our community.

Network access and battery constraints are driving the move to long range networks and off WiFi for many IoT installations. LoRa is working well for us so far for a number of use cases most of our customer spin up a private network. The ecosystem of providers is maturing and we are finding a lot of companies who are adopting existing sensors for their networks Gateway providers such as Multi Tech provide good support for the long tail of small scale (> 250 sensor installs) hardware providers to thrive.

LoRa is a wireless protocol that promises between two and five kilometers transmission range between sensors and gateway, if you haven’t already done so please read our introduction to what it is. With a separate LoRa network, facilities and/or operations can install and manage the whole operation without the access and security issues of using the corporate Wi-Fi network. A typical network will have hundreds of sensor devices sending messages to a gateway. The LoRa gateway is a self contained system, we can have the LoRa network sit completely outside of the corporate firewall (GSM) and minimize IT security concerns.

One LoRA gateway can normally cover an entire real estate. This can significantly reduce infrastructure, deployment, and administration costs compared to other shorter range wireless options like Zigbee or Bluetooth that requires complex installs. Our aim is to have a system that non technical engineers can roll out and support, more on how to do this on later blog posts, but in most cases the OpenSensors team is the equivalent of ‘2nd line support’ to the onsite team who have intergrated our apis to their helpdesk ticketing systems etc.

LoRa networks can be public or private. An example of a public network is The Things Network, we continue to work with and support that community. Most current commercial projects are running private networks at this time but will be interesting to see how that evolves over time.

To conclude, LoRa is working well for us at the moment but we will keep researching other networks to enable us to understand the pros and cons of all the network providers. Sigfox is a very interesting offering that we will properly test over the next few months, for example.

Savvy Building Managers Use Sensors to Reduce Operating Expenses

Offices and commercial spaces are undergoing a revolutionary transformation

Sensor networks are emerging as a mission critical method for offices and commercial spaces to save money. Offices and commercial spaces are undergoing a smart transformation by connecting and linking HVAC, lighting, environmental sensors, security, and safety equipment. Building and facilities managers are also installing utilization sensors to manage their spaces more efficiently.

Main benefits of data driven buildings * Operational efficiency * Use data for better design * Better workspace experience for employees

Changing workforce

Recently we helped a company design a prototype of a desk sensor monitoring system. Because so many of their people were working from home they wanted to accurately measure the peak demand during the day to see if they could save 10-20% of their desk space. Goals for the system were: * Monitor desk occupancy anonymously. * Minimize installation and deployment costs: rely on solutions that were simple enough that existing non-expert personnel could be trained to deploy. * Minimize day-to-day maintenance and deployment: this drove strategies for long battery life among others. * Design a deployment process that ensured install team could easily add sensor location metadata to allow for rich reporting and analysis once IoT sensor network was operational. * Limit the IT resources needed for deployment

The phased approach works best

First, we looked at many sensors, evaluating quality, signal-to-noise ratio and power consumption. It’s always a good idea to get a handful of different types of sensors and try them out in a very small scale. We chose an infrared red sensor with good battery life-time and a single LoRa gateway that could support all the floors and provide connection to the cloud.

Next we did a full end-to-end test, where we hooked up 5-10 sensors up completely to a cloud infrastructure all the way through the connectivity gateway. Now we had real data flowing into the infrastructure and could verify that the queries and analytics were feasible. This step just makes sure everything works as planned and you will get all the data that you will need.

Once you’re happy with the proof of concept phase, it is time for the real pilot phase. Instead of having just a handful of working sensors, now you’ll hook up an entire floor or a street or whatever your use case might be. It should be somewhere between thirty, forty, maybe up to a hundred sensors. At this point you can ensure that the sensors work at scale and the gateway can handle the load. Typically we see customers running these for a month or two to get a good feel for how the sensors will perform in a production situation.

After the pilot phase, you should have enough data to verify network performance and your choices for sensors and gateways. Now you can plan the full deployment in detail. It’s been our experience, based on a number of customer installations, that the most successful IoT networks follow these steps in a phased implementation approach.

The technology at the silicon, software, and system level continues to evolve rapidly and our aim is to reduce the time to go live and minimise risk. The internet of things is a nebulous term that includes quite a lot of specialised skillsets such as sensor manufacturing, network design, data analysis, etc.

In order to make projects successful, we have taken the approach of building many hardware, installation and network provider partnerships, and relationships to help customers succeed as opposed to trying to do it all ourselves. We have been working with customers to develop methods to lower the sensor density and in turn lower the cost of projects whilst still getting comparable accuracy.

Contact us if you would like assistance on sensor selection, network design, or planning a proof of concept deployment.